Effective GDNF brain delivery using microspheres--a promising strategy for Parkinson's disease.

نویسندگان

  • E Garbayo
  • C N Montero-Menei
  • E Ansorena
  • J L Lanciego
  • M S Aymerich
  • M J Blanco-Prieto
چکیده

Glial cell line-derived neurotrophic factor (GDNF) has shown promise in the treatment of neurodegenerative disorders of basal ganglia origin such us Parkinson's disease (PD). In this study, we investigated the neurorestorative effect of controlled GDNF delivery using biodegradable microspheres in an animal model with partial dopaminergic lesion. Microspheres were loaded with N-glycosylated recombinant GDNF and prepared using the Total Recirculation One-Machine System (TROMS). GDNF-loaded microparticles were unilaterally injected into the rat striatum by stereotaxic surgery two weeks after a unilateral partial 6-OHDA nigrostriatal lesion. Animals were tested for amphetamine-induced rotational asymmetry at different times and were sacrificed two months after microsphere implantation for immunohistochemical analysis. The putative presence of serum IgG antibodies against rat glycosylated GDNF was analyzed for addressing safety issues. The results demonstrated that GDNF-loaded microspheres, improved the rotational behavior induced by amphetamine of the GDNF-treated animals together with an increase in the density of TH positive fibers at the striatal level. The developed GDNF-loaded microparticles proved to be suitable to release biologically active GDNF over up to 5 weeks in vivo. Furthermore, none of the animals developed antibodies against GDNF demonstrating the safety of glycosylated GDNF use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model.

During the last few years, recombinant viral vectors derived from adenovirus (Ad), adeno-associated virus (AAV) or lentivirus (LV) have been developed into highly effective vehicles for gene transfer to the adult central nervous system. In recent experiments, in the rat model of Parkinson's disease, all three vector systems have been shown to be effective for long-term delivery of glial cell li...

متن کامل

Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

BACKGROUND Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, nioso...

متن کامل

A model of GDNF gene therapy in mice with 6-Hydroxydopamine lesions: time course of Neurorestorative effects and ERK1/2 activation.

BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is the most promising neurotrophin for restorative treatments in Parkinson's disease, but its biological effects are not completely understood. OBJECTIVE To define a model of GDNF gene therapy in the mouse, we studied the long-term effects of lentiviral GDNF delivery in mice with striatal 6-hydroxydopamine (6-OHDA) lesions. METHO...

متن کامل

Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson's disease.

Astrocytes are, as normal constituents of the brain, promising vehicles for ex vivo gene delivery to the central nervous system. In the present study, we have used a lentiviral vector encoding glial cell line-derived neurotrophic factor (GDNF) to transduce rat-derived primary astrocytes, in order to evaluate their potential for long-term transgene expression in vivo and neuroprotection in a rat...

متن کامل

Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson's disease.

BACKGROUND Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres. METHODS A singl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2009